
AMRStencil: An Embedded Domain
Specific Language (eDSL)

What is it?
•  Class and template library for writing AMR Stencil codes.
•  Embedding language is C++11

•  Embedded: can be used with vendor compiler, gets better with special compilers.
•  Very big improvement in language with lots of support.

•  Captures what we have found to be the essential aspects of AMR Stencil codes
•  If you have the ROSE compiler extension for AMRStencil, THEN you can enjoy

cross-platform high performance execution.
•  ROSE by no means has a lock on the AMRStencil API. We welcome other

implementations
•  AMRStencil default implementation ships with serial, MPI, and OpenMP in C++11

•  Main abstractions
•  Stencil, Box, RectMDArray, LevelData

•  Stencils have well-defined symbolic calculus
•  S1(S2(A)) = (S1*S2)(A) S1(c1*A)+S2(A) = (c1*S1+S2)(A)
•  fusion, performance models, polyhedra, etc are all much easier to analyze.

Brian Van Straalen (bvstraalen@lbl.gov)

The Goal

•  Write it in C++
•  Get rid of our Fortran kernels (our current pointwise and stencil DSL and

multi-dim array)
•  Bury ChomboFortran in the revision control system.

•  John Bell’s Paraphrase: “I’m willing to rewrite my code, once, then I’ll
retire”
•  In reality, Chombo will be rewritten.

•  A Better, more agile Chombo
•  AMRStencil DSL does not specify any parallelism or data layout.

•  Jeff Larkin’s “descriptive”, taken further.
•  In RAJA speak, user code has no exec policy
•  In Kokkos-speak, user code has no Space or Layout statements.
•  no pragmas, no directives, no memory model, no placement, no

mapping, no target
•  Move real application frameworks onto the real target DSL completely.

•  I’m sort of done with mini-apps.
•  Create the correct place to put CS effort (profile hooks, control of loops)

A Question of Binding

•  AMRStencil attempts to be very clear about what is compile-time
bindable and what must remain runtime bound

•  A Stencil object is compile-time (requires lots of
constexpr use in header files to get it all pinned down)
•  Box is a run-time object (low and high corners), subject
to adaptive mesh refinement

•  Array location and bounds are run-time
•  certain properties of Box are compile-time (modular sizes).

•  Stencils meet Boxs at run-time.
•  A significant difference from traditional stencil DSLs, which associate

Stencils with arrays at compile time.

AMR	Stencil	--	Example:	Geometric	
Mul7grid	

Multigrid::relax(LevelData<double, 1> & a_phi,
 const LevelData<double, 1> & a_rhs)
{
 for (int iter = 0; iter < m_maxRelax; iter++)
 {
 a_phi.exchange();
 BoxLayout bl = a_phi.getBoxLayout();
 BLIterator blit(bl);
 for (blit.begin();blit!=blit.end();++blit)
 {
 Box bx = bl[*blit];
 RectMDArray<double, 1> temp(bx);
 temp |= m_Laplacian(phi[*blit],bx);
 temp -= a_rhs[*blit];

 temp *= m_lambda;
 a_phi[*blit] += temp;

 }
 }
};

Apply	stencil	expressed	as	
a	linear	combina7on	of	
shi?	operators.		Replaces	
mul7ple	nested	loops.		

Increment	solu7on	
with	mul7ple	of	residual.	

Iterate	over	
patches	

	Highly	expressive:	complete	
implementa7on	~	150	LOC.	
	Uses	high-level	descrip7on	of	
block-structured	stencil	
opera7ons.	Structured-grid	stencil	
language,	plus	BoxLib	/	Chombo	
abstrac7ons	for	unions	of	
rectangles.	
	Opportuni7es	for	parallelism:	over	
patches,	over	points	in	a	patch.	
High-level	expression	of	
dependencies	(e.g.	stencil	
operators;	
exchange(),iterators).	
	Other	examples	under	
development:	AMR	Ellip7c,	
compressible	flow	benchmarks.	

	

	
	
ONLY	program	the	algorithm	essen7als,	

leave		everything	else	to	DSL.	

� := �+ �(�h(�)� ⇢)

AMR Shift Calculus DSL optimization for x86/CPU with SIMD extensions

•  High-level, user-friendly description of stencils, domain-specific information enable the

generation of clean loop-based code that can be optimized with ROSE/PolyOpt
•  Dedicated high-order stencil optimization pass in PolyOpt:

1.  Program transformations using associative/commutative properties of stencil
convolutions

2.  Target-specific code synthesis for SIMD ISA of the stencil application

Results
•  Setup: 4-core Intel Core	i7-4770K Haswell processor with AVX2 SIMD, Intel ICC compiler
•  box size=64. Execution of the stencil, double-precision data, no fusion across operators

Theoretical
Peak: 112

8th-order	mixed	
2nd	deriv	
2d	64pts	

8th	order	mixed	
4th	deriv	
2d	81pts	

6th	order	
Laplacian	
3d	125pts	

Simple	codegen	 10.53	GF/s	 10.36	GF/s	 5.51	GF/s	

+	paralleliza?on	 43.31	GF/s	 42.51	GF/s	 22.26	GF/s	

+	PolyOpt	 75.17	GF/s		 75.90	GF/s		 43.6	GF/s		

DSL	input		 ~100	lines	 ~100	lines	 ~	200	lines	

Generated	code	 4367	lines	 4649	lines	 8247	lines	

Performance	

Produc?vity	

+	

•  Genera7on	of	Complex	Code	for	
10	Levels		
of	Memory	Hierarchy	with	SW	
managed	cache	
– 4th	order	stencil	computa7on	
from		
CNS	Co-Design	Proxy-App		

– Same	DSL	code	can	generate	to		
2,	3,	4,	…	levels	too	

– Code	size	of	autogenerated	code	

How	to	overcome	exascale	challenges		

Memory	Hierarchy	 2	
Level	

3	
Level	

4	
Level	

…	 10	
level	

DSL	Code		 20	

	Auto	Generated	Code		 446	 500	 553	 819	

6	

Challenges
•  Default AMRStencil uses some template metaprogramming

•  Most ideas seen here already: forall, lambda bodies, multidimensional array
•  Metaprogramming helps the vendor compiler do a decent job

•  Template spec will generate 1 output. Like a good language spec should
•  Performance models and auto-tuning need to explore hundreds of variants

•  Hot-shot template techniques create more headaches for an augmented compiler tool.
•  Giving Dan Quinlan something to do on his weekends.

•  lambdas with side-effects can really mess up debugging.

•  …I can almost make Stencils constexpr

•  Not every Stencil is knowable at compile-time
•  Embedded Boundary Chombo

•  Stencil points and weights from least-squares solve
•  Currently using runtime stencil playback

•  As a parting shot: virtual functions are the modern callback
•  virtual functions are how you plug physics into frameworks

•  Separation of Concerns (SoC)
•  Layered Designs

Brian Van Straalen (bvstraalen@lbl.gov)
Anshu Dubey, Dan Quinlan, Phil Colella, Dan Graves, Terry Ligocki

